Class XI- MATHEMATICS Chapter-3 : TRIGONOMETRIC FUNCTIONS Hand out of Module 2/3

In this module we are going to learn about

- Sign of trigonometric functions
- > Domain and range of trigonometric functions
- > Behaviour of trigonometric functions in different quadrants.
- Graph of trigonometric functions

Sign of trigonometric functions

Let P(a, b) be a point on the unit circle with centre at the origin such that $\angle AOP = x$.

We define $\cos x = a$ and $\sin x = b$.

If, $\angle AOQ = -x$, then the coordinates of point Q will be (a, -b).

Therefore $\cos(-x) = \cos x$ and $\sin(-x) = -\sin x$

Since for every point P (a, b) on the unit circle,

 $-1 \le a \le 1$ and $-1 \le b \le 1$.

That is $-1 \le \cos x \le 1$ and $-1 \le \sin x \le 1$ for all x.

We know that a is positive in first and fourth quadrant.

Similarly, b is positive in first and second quadrant.

Therefore,

sin x is positive for $0 < x < \pi$ and negative for $\pi < x < 2\pi$.

Similarly, $\cos x$ is positive for $0 < x < \frac{\pi}{2}$, negative for $\frac{\pi}{2} < x < \frac{3\pi}{2}$ and positive for $\frac{3\pi}{2} < x < 2\pi$.

Sign of trigonometric functions in different quadrants.

	Ι	II	III	IV
sin x	+	+	_	_
cos x	+	_	—	+
tan x	+	_	+	—
cosec x	+	+	—	—
sec x	+	_	—	+
cot x	+	_	+	_

Domain and range of trigonometric functions

Function	Domain	Range
sin x	R	[-1, 1]
cos x	R	[-1, 1]
tan x	R -{x:x = (2n+1) $\frac{\pi}{2}$, n \in Z}	R
cosec x	$R-\left\{ \ x\colon x=n\pi \ , \ n\in Z \right\}$	R – (– 1, 1)
sec x	R -{x: x = (2n+1) $\frac{\pi}{2}$, n \in Z}	R – (– 1, 1)
cot x	$R-\{x: x = n\pi, n \in Z\}$	R

From the definition of sine and cosine functions, we observe that they are defined for all real numbers. Further, we observe that for each real number x, $-1 \le \cos x \le 1$ and $-1 \le \sin x \le 1$

Behaviour of trigonometric functions in different quadrants.

	I quadrant	II quadrant	III quadrant	IV quadrant
sin x	increases from	decreases from	decreases from	increases from
	0 to 1	1 to 0	0 to -1	-1 to 0
cos x	decreases from	decreases from	increases from	increases from
	1 to 0	o to -1	-1 to 0	0 to 1
tan x	increases from	increases from	increases from	increases from -
	0 to ∞	$-\infty$ to 0	0 to ∞	∞ to 0
cosec x	decreases from	increases from	increases from	decreases from
	∞ to 1	1 to ∞	$-\infty$ to -1	$-1 to -\infty$
sec x	increases from	increases from	decreases from	decreases from
	1 to ∞	$-\infty$ to -1	-1 to $-\infty$	∞ to 1
cot x	decreases from	decreases from	decreases from	decreases from
	∞ to 0	$0 to - \infty$	∞ to 0	$0 to -\infty$

Graph of trigonometric functions

The values of sin *x* and cos *x* repeat after an interval of 2π .

Hence, values of cosec x and sec x will also repeat after an interval of 2π .

The values of tan *x* and cot x repeat after an interval of π .

1) $y = \sin x$

 $2) y = \cos x$

3). $\mathbf{y} = \mathbf{tan } \mathbf{x}$

5) y = cosec x

Example 1:

Find the values of other five trigonometric functions if $\sin x = \frac{3}{5}$, x lies in second quadrant **Solution:** $\sin x = \frac{3}{5}$, therefore $\operatorname{cosec} x = \frac{5}{3}$

In figure, YZ = 3 units, XZ = 5 units.

Also, by using Pythagoras theorem, XY = 4 units

Since x lies in second quadrant, cos x, sec x, tan x and cot x will be negative.

Therefore, $\cos x = \frac{-4}{5}$, $\sec x = \frac{-5}{4}$, $\tan x = \frac{-3}{4}$ and $\cot x = \frac{-4}{3}$

Example 2 :

Find the value of $\cos(-1710^\circ)$.

Solution: We know that values of $\cos x$ repeats after an interval of 2π or 360° .

Therefore, $\cos(-1710^\circ) = \cos(-1710^\circ + 5 \times 360^\circ) = \cos(-1710^\circ + 1800^\circ) = \cos 90^\circ = 0$

Example 3:

Find the value of $\sin \frac{-31\pi}{3}$ Solution: We know that $\sin(-x) = -\sin x$ Also, values of $\sin x$ repeat after an interval of 2π . Therefore, $\sin \frac{-31\pi}{3} = -\sin \frac{31\pi}{3}$ $= -\sin (10\pi + \frac{\pi}{3}) = -\sin \frac{\pi}{3} = -\frac{\sqrt{3}}{2}.$